How to proof the Collatz conjecture - an approach by reversing the sequences

Explanation for up and down and 4 rules for reversing Collatz sequences

The behaviour of up and down of a Collatz sequence can be explained by using the binary system and $n+(n+1) / 2$ instead of $(3 n+1) / 2$

Example 255 (with $\bmod 4=3$):

```
    n = 11111111 (255) mod 4 = 3
+(n+1)/2 = 1000000 (128) number to add
    Result = 101111111 (383) mod 4 = 3
```

Example $27(\bmod 4=3)$:

```
    n = 11011 (27) mod 4 = 3
+(n+1)/2 = 1110 (14) number to add
    Result = 101001 (41) mod 4 = 1
```

Next iteration (with $41 \bmod 4=1$):

```
    n = 101001 (41) mod 4 = 1
+(n+1)/2=10101 (21) number to add
    Result = 111110 (62) mod 4 = 1 -> halving: 11111 (31) mod 4 = 3
```

We can say:

- $\mathrm{n} \bmod 4=3$ let the net result (the number divided by 2 until it is odd) grow, until the iteration reach a number with $\bmod 4=1$
- $\mathrm{n} \bmod 4=1$ let the net result (the number divided by 2 until it is odd) shrink, until the iteration reach a number with $\bmod 4=3$ (or the number is 1)

Additionally, there are 4 rules for reversing the Collatz sequences:

1. Any number n, which leads with the Collatz-rules to the end loop 4-2-1, multiplied by 2^{x} (x from 1 to ∞), will also lead to $4-2-1$; the result will be even and you can either repeat this instruction or, if the result's $\bmod 6=4$, you can subtract 1 and divide its result by 3 for a new number (which will be odd, thus, this instruction or instruction 2 can be applied, or depending on the result's mod 3, instruction 3 or 4)
2. Any odd number n, which leads with the Collatz-rules to the end loop 4-2-1, multiplied by 4 and then added 1, will also lead to 4-2-1; and because the result is again an odd number, this instruction or instruction 1 can be applied, or depending on the result's mod 3 , instruction 3 or 4
3. Any odd number n with $\mathrm{n} \bmod 3=2$, which leads with the Collatz-rules to the end loop 4-2-1, subtracted $(n+1) / 3$, will also lead to $4-2-1$; and because the result is again an odd number, instruction 1 or 2 can be applied or, depending on the result's mod 3, this instruction or instruction 4
4. Any odd number n with $n \bmod 3=1$, which leads with the Collatz-rules to the end loop $4-2-1$, added (n $1) / 3$, will also lead to $4-2-1$; and because the result is again an odd number, instruction 1 or 2 can be applied or, depending on the result‘s mod 3, this instruction or instruction 3
